Metamath Proof Explorer


Theorem t1sep2

Description: Any two points in a T_1 space which have no separation are equal. (Contributed by Jeff Hankins, 1-Feb-2010)

Ref Expression
Hypothesis t1sep.1 X=J
Assertion t1sep2 JFreAXBXoJAoBoA=B

Proof

Step Hyp Ref Expression
1 t1sep.1 X=J
2 t1top JFreJTop
3 1 toptopon JTopJTopOnX
4 2 3 sylib JFreJTopOnX
5 ist1-2 JTopOnXJFrexXyXoJxoyox=y
6 4 5 syl JFreJFrexXyXoJxoyox=y
7 6 ibi JFrexXyXoJxoyox=y
8 eleq1 x=AxoAo
9 8 imbi1d x=AxoyoAoyo
10 9 ralbidv x=AoJxoyooJAoyo
11 eqeq1 x=Ax=yA=y
12 10 11 imbi12d x=AoJxoyox=yoJAoyoA=y
13 eleq1 y=ByoBo
14 13 imbi2d y=BAoyoAoBo
15 14 ralbidv y=BoJAoyooJAoBo
16 eqeq2 y=BA=yA=B
17 15 16 imbi12d y=BoJAoyoA=yoJAoBoA=B
18 12 17 rspc2v AXBXxXyXoJxoyox=yoJAoBoA=B
19 7 18 mpan9 JFreAXBXoJAoBoA=B
20 19 3impb JFreAXBXoJAoBoA=B