Metamath Proof Explorer


Theorem t1sncld

Description: In a T_1 space, singletons are closed. (Contributed by Jeff Hankins, 1-Feb-2010)

Ref Expression
Hypothesis ist0.1 X=J
Assertion t1sncld JFreAXAClsdJ

Proof

Step Hyp Ref Expression
1 ist0.1 X=J
2 1 ist1 JFreJTopxXxClsdJ
3 sneq x=Ax=A
4 3 eleq1d x=AxClsdJAClsdJ
5 4 rspccv xXxClsdJAXAClsdJ
6 2 5 simplbiim JFreAXAClsdJ
7 6 imp JFreAXAClsdJ