Metamath Proof Explorer


Theorem tanhalfpim

Description: The tangent of _pi / 2 minus a number is the cotangent, here represented by cos A / sin A . (Contributed by SN, 2-Sep-2025)

Ref Expression
Hypotheses tanhalfpim.a φ A
tanhalfpim.1 φ sin A 0
Assertion tanhalfpim φ tan π 2 A = cos A sin A

Proof

Step Hyp Ref Expression
1 tanhalfpim.a φ A
2 tanhalfpim.1 φ sin A 0
3 picn π
4 2cn 2
5 2ne0 2 0
6 3 4 5 divcli π 2
7 6 a1i φ π 2
8 7 1 subcld φ π 2 A
9 coshalfpim A cos π 2 A = sin A
10 1 9 syl φ cos π 2 A = sin A
11 10 2 eqnetrd φ cos π 2 A 0
12 tanval π 2 A cos π 2 A 0 tan π 2 A = sin π 2 A cos π 2 A
13 8 11 12 syl2anc φ tan π 2 A = sin π 2 A cos π 2 A
14 sinhalfpim A sin π 2 A = cos A
15 14 9 oveq12d A sin π 2 A cos π 2 A = cos A sin A
16 1 15 syl φ sin π 2 A cos π 2 A = cos A sin A
17 13 16 eqtrd φ tan π 2 A = cos A sin A