Metamath Proof Explorer


Theorem tfinds

Description: Principle of Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. Theorem Schema 4 of Suppes p. 197. Theorem 1.19 of Schloeder p. 3. (Contributed by NM, 16-Apr-1995) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Hypotheses tfinds.1 x=φψ
tfinds.2 x=yφχ
tfinds.3 x=sucyφθ
tfinds.4 x=Aφτ
tfinds.5 ψ
tfinds.6 yOnχθ
tfinds.7 Limxyxχφ
Assertion tfinds AOnτ

Proof

Step Hyp Ref Expression
1 tfinds.1 x=φψ
2 tfinds.2 x=yφχ
3 tfinds.3 x=sucyφθ
4 tfinds.4 x=Aφτ
5 tfinds.5 ψ
6 tfinds.6 yOnχθ
7 tfinds.7 Limxyxχφ
8 dflim3 LimxOrdx¬x=yOnx=sucy
9 8 notbii ¬Limx¬Ordx¬x=yOnx=sucy
10 iman Ordxx=yOnx=sucy¬Ordx¬x=yOnx=sucy
11 eloni xOnOrdx
12 pm2.27 OrdxOrdxx=yOnx=sucyx=yOnx=sucy
13 11 12 syl xOnOrdxx=yOnx=sucyx=yOnx=sucy
14 5 1 mpbiri x=φ
15 14 a1d x=yxχφ
16 nfra1 yyxχ
17 nfv yφ
18 16 17 nfim yyxχφ
19 vex yV
20 19 sucid ysucy
21 2 rspcv ysucyxsucyφχ
22 20 21 ax-mp xsucyφχ
23 22 6 syl5 yOnxsucyφθ
24 raleq x=sucyzxzxφzsucyzxφ
25 nfv xχ
26 25 2 sbiev yxφχ
27 sbequ y=zyxφzxφ
28 26 27 bitr3id y=zχzxφ
29 28 cbvralvw yxχzxzxφ
30 cbvralsvw xsucyφzsucyzxφ
31 24 29 30 3bitr4g x=sucyyxχxsucyφ
32 31 imbi1d x=sucyyxχθxsucyφθ
33 23 32 syl5ibrcom yOnx=sucyyxχθ
34 3 biimprd x=sucyθφ
35 34 a1i yOnx=sucyθφ
36 33 35 syldd yOnx=sucyyxχφ
37 18 36 rexlimi yOnx=sucyyxχφ
38 15 37 jaoi x=yOnx=sucyyxχφ
39 13 38 syl6 xOnOrdxx=yOnx=sucyyxχφ
40 10 39 biimtrrid xOn¬Ordx¬x=yOnx=sucyyxχφ
41 9 40 biimtrid xOn¬Limxyxχφ
42 41 7 pm2.61d2 xOnyxχφ
43 2 4 42 tfis3 AOnτ