Metamath Proof Explorer


Theorem tfis

Description: Transfinite Induction Schema. If all ordinal numbers less than a given number x have a property (induction hypothesis), then all ordinal numbers have the property (conclusion). Exercise 25 of Enderton p. 200. (Contributed by NM, 1-Aug-1994) (Revised by Mario Carneiro, 20-Nov-2016)

Ref Expression
Hypothesis tfis.1 xOnyxyxφφ
Assertion tfis xOnφ

Proof

Step Hyp Ref Expression
1 tfis.1 xOnyxyxφφ
2 ssrab2 xOn|φOn
3 nfcv _xz
4 nfrab1 _xxOn|φ
5 3 4 nfss xzxOn|φ
6 4 nfcri xzxOn|φ
7 5 6 nfim xzxOn|φzxOn|φ
8 dfss3 xxOn|φyxyxOn|φ
9 sseq1 x=zxxOn|φzxOn|φ
10 8 9 bitr3id x=zyxyxOn|φzxOn|φ
11 rabid xxOn|φxOnφ
12 eleq1w x=zxxOn|φzxOn|φ
13 11 12 bitr3id x=zxOnφzxOn|φ
14 10 13 imbi12d x=zyxyxOn|φxOnφzxOn|φzxOn|φ
15 sbequ w=ywxφyxφ
16 nfcv _xOn
17 nfcv _wOn
18 nfv wφ
19 nfs1v xwxφ
20 sbequ12 x=wφwxφ
21 16 17 18 19 20 cbvrabw xOn|φ=wOn|wxφ
22 15 21 elrab2 yxOn|φyOnyxφ
23 22 simprbi yxOn|φyxφ
24 23 ralimi yxyxOn|φyxyxφ
25 24 1 syl5 xOnyxyxOn|φφ
26 25 anc2li xOnyxyxOn|φxOnφ
27 3 7 14 26 vtoclgaf zOnzxOn|φzxOn|φ
28 27 rgen zOnzxOn|φzxOn|φ
29 tfi xOn|φOnzOnzxOn|φzxOn|φxOn|φ=On
30 2 28 29 mp2an xOn|φ=On
31 30 eqcomi On=xOn|φ
32 31 reqabi xOnxOnφ
33 32 simprbi xOnφ