Metamath Proof Explorer


Theorem tfis

Description: Transfinite Induction Schema. If all ordinal numbers less than a given number x have a property (induction hypothesis), then all ordinal numbers have the property (conclusion). Exercise 25 of Enderton p. 200. (Contributed by NM, 1-Aug-1994) (Revised by Mario Carneiro, 20-Nov-2016)

Ref Expression
Hypothesis tfis.1 x On y x y x φ φ
Assertion tfis x On φ

Proof

Step Hyp Ref Expression
1 tfis.1 x On y x y x φ φ
2 ssrab2 x On | φ On
3 nfcv _ x z
4 nfrab1 _ x x On | φ
5 3 4 nfss x z x On | φ
6 4 nfcri x z x On | φ
7 5 6 nfim x z x On | φ z x On | φ
8 dfss3 x x On | φ y x y x On | φ
9 sseq1 x = z x x On | φ z x On | φ
10 8 9 bitr3id x = z y x y x On | φ z x On | φ
11 rabid x x On | φ x On φ
12 eleq1w x = z x x On | φ z x On | φ
13 11 12 bitr3id x = z x On φ z x On | φ
14 10 13 imbi12d x = z y x y x On | φ x On φ z x On | φ z x On | φ
15 sbequ w = y w x φ y x φ
16 nfcv _ x On
17 nfcv _ w On
18 nfv w φ
19 nfs1v x w x φ
20 sbequ12 x = w φ w x φ
21 16 17 18 19 20 cbvrabw x On | φ = w On | w x φ
22 15 21 elrab2 y x On | φ y On y x φ
23 22 simprbi y x On | φ y x φ
24 23 ralimi y x y x On | φ y x y x φ
25 24 1 syl5 x On y x y x On | φ φ
26 25 anc2li x On y x y x On | φ x On φ
27 3 7 14 26 vtoclgaf z On z x On | φ z x On | φ
28 27 rgen z On z x On | φ z x On | φ
29 tfi x On | φ On z On z x On | φ z x On | φ x On | φ = On
30 2 28 29 mp2an x On | φ = On
31 30 eqcomi On = x On | φ
32 31 rabeq2i x On x On φ
33 32 simprbi x On φ