Description: Transfinite Induction Schema. If all ordinal numbers less than a given number x have a property (induction hypothesis), then all ordinal numbers have the property (conclusion). Exercise 25 of Enderton p. 200. (Contributed by NM, 1-Aug-1994) (Revised by Mario Carneiro, 20-Nov-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | tfis.1 | |
|
Assertion | tfis | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfis.1 | |
|
2 | ssrab2 | |
|
3 | nfcv | |
|
4 | nfrab1 | |
|
5 | 3 4 | nfss | |
6 | 4 | nfcri | |
7 | 5 6 | nfim | |
8 | dfss3 | |
|
9 | sseq1 | |
|
10 | 8 9 | bitr3id | |
11 | rabid | |
|
12 | eleq1w | |
|
13 | 11 12 | bitr3id | |
14 | 10 13 | imbi12d | |
15 | sbequ | |
|
16 | nfcv | |
|
17 | nfcv | |
|
18 | nfv | |
|
19 | nfs1v | |
|
20 | sbequ12 | |
|
21 | 16 17 18 19 20 | cbvrabw | |
22 | 15 21 | elrab2 | |
23 | 22 | simprbi | |
24 | 23 | ralimi | |
25 | 24 1 | syl5 | |
26 | 25 | anc2li | |
27 | 3 7 14 26 | vtoclgaf | |
28 | 27 | rgen | |
29 | tfi | |
|
30 | 2 28 29 | mp2an | |
31 | 30 | eqcomi | |
32 | 31 | reqabi | |
33 | 32 | simprbi | |