Metamath Proof Explorer


Theorem tfr2a

Description: A weak version of tfr2 which is useful for proofs that avoid the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015)

Ref Expression
Hypothesis tfr.1 F=recsG
Assertion tfr2a AdomFFA=GFA

Proof

Step Hyp Ref Expression
1 tfr.1 F=recsG
2 eqid f|xOnfFnxyxfy=Gfy=f|xOnfFnxyxfy=Gfy
3 2 tfrlem9 AdomrecsGrecsGA=GrecsGA
4 1 dmeqi domF=domrecsG
5 3 4 eleq2s AdomFrecsGA=GrecsGA
6 1 fveq1i FA=recsGA
7 1 reseq1i FA=recsGA
8 7 fveq2i GFA=GrecsGA
9 5 6 8 3eqtr4g AdomFFA=GFA