Description: Lemma for transfinite recursion. Here we compute the value of recs (the union of all acceptable functions). (Contributed by NM, 17-Aug-1994)
Ref | Expression | ||
---|---|---|---|
Hypothesis | tfrlem.1 | |
|
Assertion | tfrlem9 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlem.1 | |
|
2 | eldm2g | |
|
3 | 2 | ibi | |
4 | dfrecs3 | |
|
5 | 4 | eleq2i | |
6 | eluniab | |
|
7 | 5 6 | bitri | |
8 | fnop | |
|
9 | rspe | |
|
10 | 1 | eqabri | |
11 | elssuni | |
|
12 | 1 | recsfval | |
13 | 11 12 | sseqtrrdi | |
14 | 10 13 | sylbir | |
15 | 9 14 | syl | |
16 | fveq2 | |
|
17 | reseq2 | |
|
18 | 17 | fveq2d | |
19 | 16 18 | eqeq12d | |
20 | 19 | rspcv | |
21 | fndm | |
|
22 | 21 | eleq2d | |
23 | 1 | tfrlem7 | |
24 | funssfv | |
|
25 | 23 24 | mp3an1 | |
26 | 25 | adantrl | |
27 | 21 | eleq1d | |
28 | onelss | |
|
29 | 27 28 | syl6bir | |
30 | 29 | imp31 | |
31 | fun2ssres | |
|
32 | 31 | fveq2d | |
33 | 23 32 | mp3an1 | |
34 | 30 33 | sylan2 | |
35 | 26 34 | eqeq12d | |
36 | 35 | exbiri | |
37 | 36 | com3l | |
38 | 37 | exp31 | |
39 | 38 | com34 | |
40 | 39 | com24 | |
41 | 22 40 | sylbird | |
42 | 41 | com3l | |
43 | 20 42 | syld | |
44 | 43 | com24 | |
45 | 44 | imp4d | |
46 | 15 45 | mpdi | |
47 | 8 46 | syl | |
48 | 47 | exp4d | |
49 | 48 | ex | |
50 | 49 | com4r | |
51 | 50 | pm2.43i | |
52 | 51 | com3l | |
53 | 52 | imp4a | |
54 | 53 | rexlimdv | |
55 | 54 | imp | |
56 | 55 | exlimiv | |
57 | 7 56 | sylbi | |
58 | 57 | exlimiv | |
59 | 3 58 | syl | |