Metamath Proof Explorer


Theorem tfrlem9

Description: Lemma for transfinite recursion. Here we compute the value of recs (the union of all acceptable functions). (Contributed by NM, 17-Aug-1994)

Ref Expression
Hypothesis tfrlem.1 A=f|xOnfFnxyxfy=Ffy
Assertion tfrlem9 BdomrecsFrecsFB=FrecsFB

Proof

Step Hyp Ref Expression
1 tfrlem.1 A=f|xOnfFnxyxfy=Ffy
2 eldm2g BdomrecsFBdomrecsFzBzrecsF
3 2 ibi BdomrecsFzBzrecsF
4 dfrecs3 recsF=f|xOnfFnxyxfy=Ffy
5 4 eleq2i BzrecsFBzf|xOnfFnxyxfy=Ffy
6 eluniab Bzf|xOnfFnxyxfy=FfyfBzfxOnfFnxyxfy=Ffy
7 5 6 bitri BzrecsFfBzfxOnfFnxyxfy=Ffy
8 fnop fFnxBzfBx
9 rspe xOnfFnxyxfy=FfyxOnfFnxyxfy=Ffy
10 1 eqabri fAxOnfFnxyxfy=Ffy
11 elssuni fAfA
12 1 recsfval recsF=A
13 11 12 sseqtrrdi fAfrecsF
14 10 13 sylbir xOnfFnxyxfy=FfyfrecsF
15 9 14 syl xOnfFnxyxfy=FfyfrecsF
16 fveq2 y=Bfy=fB
17 reseq2 y=Bfy=fB
18 17 fveq2d y=BFfy=FfB
19 16 18 eqeq12d y=Bfy=FfyfB=FfB
20 19 rspcv Bxyxfy=FfyfB=FfB
21 fndm fFnxdomf=x
22 21 eleq2d fFnxBdomfBx
23 1 tfrlem7 FunrecsF
24 funssfv FunrecsFfrecsFBdomfrecsFB=fB
25 23 24 mp3an1 frecsFBdomfrecsFB=fB
26 25 adantrl frecsFfFnxxOnBdomfrecsFB=fB
27 21 eleq1d fFnxdomfOnxOn
28 onelss domfOnBdomfBdomf
29 27 28 syl6bir fFnxxOnBdomfBdomf
30 29 imp31 fFnxxOnBdomfBdomf
31 fun2ssres FunrecsFfrecsFBdomfrecsFB=fB
32 31 fveq2d FunrecsFfrecsFBdomfFrecsFB=FfB
33 23 32 mp3an1 frecsFBdomfFrecsFB=FfB
34 30 33 sylan2 frecsFfFnxxOnBdomfFrecsFB=FfB
35 26 34 eqeq12d frecsFfFnxxOnBdomfrecsFB=FrecsFBfB=FfB
36 35 exbiri frecsFfFnxxOnBdomffB=FfBrecsFB=FrecsFB
37 36 com3l fFnxxOnBdomffB=FfBfrecsFrecsFB=FrecsFB
38 37 exp31 fFnxxOnBdomffB=FfBfrecsFrecsFB=FrecsFB
39 38 com34 fFnxxOnfB=FfBBdomffrecsFrecsFB=FrecsFB
40 39 com24 fFnxBdomffB=FfBxOnfrecsFrecsFB=FrecsFB
41 22 40 sylbird fFnxBxfB=FfBxOnfrecsFrecsFB=FrecsFB
42 41 com3l BxfB=FfBfFnxxOnfrecsFrecsFB=FrecsFB
43 20 42 syld Bxyxfy=FfyfFnxxOnfrecsFrecsFB=FrecsFB
44 43 com24 BxxOnfFnxyxfy=FfyfrecsFrecsFB=FrecsFB
45 44 imp4d BxxOnfFnxyxfy=FfyfrecsFrecsFB=FrecsFB
46 15 45 mpdi BxxOnfFnxyxfy=FfyrecsFB=FrecsFB
47 8 46 syl fFnxBzfxOnfFnxyxfy=FfyrecsFB=FrecsFB
48 47 exp4d fFnxBzfxOnfFnxyxfy=FfyrecsFB=FrecsFB
49 48 ex fFnxBzfxOnfFnxyxfy=FfyrecsFB=FrecsFB
50 49 com4r fFnxfFnxBzfxOnyxfy=FfyrecsFB=FrecsFB
51 50 pm2.43i fFnxBzfxOnyxfy=FfyrecsFB=FrecsFB
52 51 com3l BzfxOnfFnxyxfy=FfyrecsFB=FrecsFB
53 52 imp4a BzfxOnfFnxyxfy=FfyrecsFB=FrecsFB
54 53 rexlimdv BzfxOnfFnxyxfy=FfyrecsFB=FrecsFB
55 54 imp BzfxOnfFnxyxfy=FfyrecsFB=FrecsFB
56 55 exlimiv fBzfxOnfFnxyxfy=FfyrecsFB=FrecsFB
57 7 56 sylbi BzrecsFrecsFB=FrecsFB
58 57 exlimiv zBzrecsFrecsFB=FrecsFB
59 3 58 syl BdomrecsFrecsFB=FrecsFB