Metamath Proof Explorer


Theorem dfrecs3

Description: The old definition of transfinite recursion. This version is preferred for development, as it demonstrates the properties of transfinite recursion without relying on well-ordered recursion. (Contributed by Scott Fenton, 3-Aug-2020) (Proof revised by Scott Fenton, 18-Nov-2024.)

Ref Expression
Assertion dfrecs3 recsF=f|xOnfFnxyxfy=Ffy

Proof

Step Hyp Ref Expression
1 df-recs recsF=wrecsEOnF
2 df-wrecs wrecsEOnF=frecsEOnF2nd
3 df-frecs frecsEOnF2nd=f|xfFnxxOnyxPredEOnyxyxfy=yF2ndfPredEOny
4 3anass fFnxxOnyxPredEOnyxyxfy=yF2ndfPredEOnyfFnxxOnyxPredEOnyxyxfy=yF2ndfPredEOny
5 vex xV
6 5 elon xOnOrdx
7 ordsson OrdxxOn
8 ordtr OrdxTrx
9 7 8 jca OrdxxOnTrx
10 epweon EWeOn
11 wess xOnEWeOnEWex
12 10 11 mpi xOnEWex
13 12 anim1ci xOnTrxTrxEWex
14 df-ord OrdxTrxEWex
15 13 14 sylibr xOnTrxOrdx
16 9 15 impbii OrdxxOnTrx
17 dftr3 Trxyxyx
18 ssel2 xOnyxyOn
19 predon yOnPredEOny=y
20 19 sseq1d yOnPredEOnyxyx
21 18 20 syl xOnyxPredEOnyxyx
22 21 ralbidva xOnyxPredEOnyxyxyx
23 17 22 bitr4id xOnTrxyxPredEOnyx
24 23 pm5.32i xOnTrxxOnyxPredEOnyx
25 6 16 24 3bitri xOnxOnyxPredEOnyx
26 25 anbi1i xOnyxfy=yF2ndfPredEOnyxOnyxPredEOnyxyxfy=yF2ndfPredEOny
27 onelon xOnyxyOn
28 27 19 syl xOnyxPredEOny=y
29 28 reseq2d xOnyxfPredEOny=fy
30 29 oveq2d xOnyxyF2ndfPredEOny=yF2ndfy
31 id yxyx
32 vex fV
33 32 resex fyV
34 33 a1i yxfyV
35 31 34 opco2 yxyF2ndfy=Ffy
36 35 adantl xOnyxyF2ndfy=Ffy
37 30 36 eqtrd xOnyxyF2ndfPredEOny=Ffy
38 37 eqeq2d xOnyxfy=yF2ndfPredEOnyfy=Ffy
39 38 ralbidva xOnyxfy=yF2ndfPredEOnyyxfy=Ffy
40 39 pm5.32i xOnyxfy=yF2ndfPredEOnyxOnyxfy=Ffy
41 26 40 bitr3i xOnyxPredEOnyxyxfy=yF2ndfPredEOnyxOnyxfy=Ffy
42 41 anbi2i fFnxxOnyxPredEOnyxyxfy=yF2ndfPredEOnyfFnxxOnyxfy=Ffy
43 an12 fFnxxOnyxfy=FfyxOnfFnxyxfy=Ffy
44 4 42 43 3bitri fFnxxOnyxPredEOnyxyxfy=yF2ndfPredEOnyxOnfFnxyxfy=Ffy
45 44 exbii xfFnxxOnyxPredEOnyxyxfy=yF2ndfPredEOnyxxOnfFnxyxfy=Ffy
46 df-rex xOnfFnxyxfy=FfyxxOnfFnxyxfy=Ffy
47 45 46 bitr4i xfFnxxOnyxPredEOnyxyxfy=yF2ndfPredEOnyxOnfFnxyxfy=Ffy
48 47 abbii f|xfFnxxOnyxPredEOnyxyxfy=yF2ndfPredEOny=f|xOnfFnxyxfy=Ffy
49 48 unieqi f|xfFnxxOnyxPredEOnyxyxfy=yF2ndfPredEOny=f|xOnfFnxyxfy=Ffy
50 3 49 eqtri frecsEOnF2nd=f|xOnfFnxyxfy=Ffy
51 1 2 50 3eqtri recsF=f|xOnfFnxyxfy=Ffy