Description: The old definition of transfinite recursion. This version is preferred for development, as it demonstrates the properties of transfinite recursion without relying on well-ordered recursion. (Contributed by Scott Fenton, 3-Aug-2020) (Proof revised by Scott Fenton, 18-Nov-2024.)
Ref | Expression | ||
---|---|---|---|
Assertion | dfrecs3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-recs | |
|
2 | df-wrecs | |
|
3 | df-frecs | |
|
4 | 3anass | |
|
5 | vex | |
|
6 | 5 | elon | |
7 | ordsson | |
|
8 | ordtr | |
|
9 | 7 8 | jca | |
10 | epweon | |
|
11 | wess | |
|
12 | 10 11 | mpi | |
13 | 12 | anim1ci | |
14 | df-ord | |
|
15 | 13 14 | sylibr | |
16 | 9 15 | impbii | |
17 | dftr3 | |
|
18 | ssel2 | |
|
19 | predon | |
|
20 | 19 | sseq1d | |
21 | 18 20 | syl | |
22 | 21 | ralbidva | |
23 | 17 22 | bitr4id | |
24 | 23 | pm5.32i | |
25 | 6 16 24 | 3bitri | |
26 | 25 | anbi1i | |
27 | onelon | |
|
28 | 27 19 | syl | |
29 | 28 | reseq2d | |
30 | 29 | oveq2d | |
31 | id | |
|
32 | vex | |
|
33 | 32 | resex | |
34 | 33 | a1i | |
35 | 31 34 | opco2 | |
36 | 35 | adantl | |
37 | 30 36 | eqtrd | |
38 | 37 | eqeq2d | |
39 | 38 | ralbidva | |
40 | 39 | pm5.32i | |
41 | 26 40 | bitr3i | |
42 | 41 | anbi2i | |
43 | an12 | |
|
44 | 4 42 43 | 3bitri | |
45 | 44 | exbii | |
46 | df-rex | |
|
47 | 45 46 | bitr4i | |
48 | 47 | abbii | |
49 | 48 | unieqi | |
50 | 3 49 | eqtri | |
51 | 1 2 50 | 3eqtri | |