Metamath Proof Explorer


Theorem tfr3ALT

Description: Alternate proof of tfr3 using well-ordered recursion. (Contributed by Scott Fenton, 3-Aug-2020) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis tfrALT.1 F=recsG
Assertion tfr3ALT BFnOnxOnBx=GBxB=F

Proof

Step Hyp Ref Expression
1 tfrALT.1 F=recsG
2 predon xOnPredEOnx=x
3 2 reseq2d xOnBPredEOnx=Bx
4 3 fveq2d xOnGBPredEOnx=GBx
5 4 eqeq2d xOnBx=GBPredEOnxBx=GBx
6 5 ralbiia xOnBx=GBPredEOnxxOnBx=GBx
7 epweon EWeOn
8 epse ESeOn
9 df-recs recsG=wrecsEOnG
10 1 9 eqtri F=wrecsEOnG
11 10 wfr3 EWeOnESeOnBFnOnxOnBx=GBPredEOnxF=B
12 7 8 11 mpanl12 BFnOnxOnBx=GBPredEOnxF=B
13 6 12 sylan2br BFnOnxOnBx=GBxF=B
14 13 eqcomd BFnOnxOnBx=GBxB=F