Metamath Proof Explorer


Theorem tg2

Description: Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006)

Ref Expression
Assertion tg2 AtopGenBCAxBCxxA

Proof

Step Hyp Ref Expression
1 elfvdm AtopGenBBdomtopGen
2 eltg2b BdomtopGenAtopGenByAxByxxA
3 eleq1 y=CyxCx
4 3 anbi1d y=CyxxACxxA
5 4 rexbidv y=CxByxxAxBCxxA
6 5 rspccv yAxByxxACAxBCxxA
7 2 6 syl6bi BdomtopGenAtopGenBCAxBCxxA
8 1 7 mpcom AtopGenBCAxBCxxA
9 8 imp AtopGenBCAxBCxxA