Metamath Proof Explorer


Theorem tg5segofs

Description: Rephrase axtg5seg using the outer five segment predicate. Theorem 2.10 of Schwabhauser p. 28. (Contributed by Thierry Arnoux, 23-Mar-2019)

Ref Expression
Hypotheses tg5segofs.p P = Base G
tg5segofs.m - ˙ = dist G
tg5segofs.s I = Itv G
tg5segofs.g φ G 𝒢 Tarski
tg5segofs.a φ A P
tg5segofs.b φ B P
tg5segofs.c φ C P
tg5segofs.d φ D P
tg5segofs.e φ E P
tg5segofs.f φ F P
tg5segofs.o O = AFS G
tg5segofs.h φ H P
tg5segofs.i φ I P
tg5segofs.1 φ A B C D O E F H I
tg5segofs.2 φ A B
Assertion tg5segofs φ C - ˙ D = H - ˙ I

Proof

Step Hyp Ref Expression
1 tg5segofs.p P = Base G
2 tg5segofs.m - ˙ = dist G
3 tg5segofs.s I = Itv G
4 tg5segofs.g φ G 𝒢 Tarski
5 tg5segofs.a φ A P
6 tg5segofs.b φ B P
7 tg5segofs.c φ C P
8 tg5segofs.d φ D P
9 tg5segofs.e φ E P
10 tg5segofs.f φ F P
11 tg5segofs.o O = AFS G
12 tg5segofs.h φ H P
13 tg5segofs.i φ I P
14 tg5segofs.1 φ A B C D O E F H I
15 tg5segofs.2 φ A B
16 1 2 3 4 11 5 6 7 8 9 10 12 13 brafs φ A B C D O E F H I B A I C F E I H A - ˙ B = E - ˙ F B - ˙ C = F - ˙ H A - ˙ D = E - ˙ I B - ˙ D = F - ˙ I
17 14 16 mpbid φ B A I C F E I H A - ˙ B = E - ˙ F B - ˙ C = F - ˙ H A - ˙ D = E - ˙ I B - ˙ D = F - ˙ I
18 17 simp1d φ B A I C F E I H
19 18 simpld φ B A I C
20 18 simprd φ F E I H
21 17 simp2d φ A - ˙ B = E - ˙ F B - ˙ C = F - ˙ H
22 21 simpld φ A - ˙ B = E - ˙ F
23 21 simprd φ B - ˙ C = F - ˙ H
24 17 simp3d φ A - ˙ D = E - ˙ I B - ˙ D = F - ˙ I
25 24 simpld φ A - ˙ D = E - ˙ I
26 24 simprd φ B - ˙ D = F - ˙ I
27 1 2 3 4 5 6 7 9 10 12 8 13 15 19 20 22 23 25 26 axtg5seg φ C - ˙ D = H - ˙ I