Metamath Proof Explorer


Theorem tglineelsb2

Description: If S lies on PQ , then PQ = PS . Theorem 6.16 of Schwabhauser p. 45. (Contributed by Thierry Arnoux, 17-May-2019)

Ref Expression
Hypotheses tglineelsb2.p B = Base G
tglineelsb2.i I = Itv G
tglineelsb2.l L = Line 𝒢 G
tglineelsb2.g φ G 𝒢 Tarski
tglineelsb2.1 φ P B
tglineelsb2.2 φ Q B
tglineelsb2.4 φ P Q
tglineelsb2.3 φ S B
tglineelsb2.5 φ S P
tglineelsb2.6 φ S P L Q
Assertion tglineelsb2 φ P L Q = P L S

Proof

Step Hyp Ref Expression
1 tglineelsb2.p B = Base G
2 tglineelsb2.i I = Itv G
3 tglineelsb2.l L = Line 𝒢 G
4 tglineelsb2.g φ G 𝒢 Tarski
5 tglineelsb2.1 φ P B
6 tglineelsb2.2 φ Q B
7 tglineelsb2.4 φ P Q
8 tglineelsb2.3 φ S B
9 tglineelsb2.5 φ S P
10 tglineelsb2.6 φ S P L Q
11 4 adantr φ x P L Q G 𝒢 Tarski
12 5 adantr φ x P L Q P B
13 8 adantr φ x P L Q S B
14 9 necomd φ P S
15 14 adantr φ x P L Q P S
16 6 adantr φ x P L Q Q B
17 7 necomd φ Q P
18 17 adantr φ x P L Q Q P
19 10 adantr φ x P L Q S P L Q
20 1 2 3 11 16 12 13 18 19 lncom φ x P L Q S Q L P
21 1 2 3 11 12 13 16 15 20 18 lnrot1 φ x P L Q Q P L S
22 1 3 2 4 5 6 7 tglnssp φ P L Q B
23 22 sselda φ x P L Q x B
24 simpr φ x P L Q x P L Q
25 1 2 3 11 12 13 15 16 18 21 23 24 tglineeltr φ x P L Q x P L S
26 4 adantr φ x P L S G 𝒢 Tarski
27 5 adantr φ x P L S P B
28 6 adantr φ x P L S Q B
29 7 adantr φ x P L S P Q
30 8 adantr φ x P L S S B
31 9 adantr φ x P L S S P
32 10 adantr φ x P L S S P L Q
33 1 3 2 4 5 8 14 tglnssp φ P L S B
34 33 sselda φ x P L S x B
35 simpr φ x P L S x P L S
36 1 2 3 26 27 28 29 30 31 32 34 35 tglineeltr φ x P L S x P L Q
37 25 36 impbida φ x P L Q x P L S
38 37 eqrdv φ P L Q = P L S