| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tglineelsb2.p |  | 
						
							| 2 |  | tglineelsb2.i |  | 
						
							| 3 |  | tglineelsb2.l |  | 
						
							| 4 |  | tglineelsb2.g |  | 
						
							| 5 |  | tglineelsb2.1 |  | 
						
							| 6 |  | tglineelsb2.2 |  | 
						
							| 7 |  | tglineelsb2.4 |  | 
						
							| 8 |  | tglineelsb2.3 |  | 
						
							| 9 |  | tglineelsb2.5 |  | 
						
							| 10 |  | tglineelsb2.6 |  | 
						
							| 11 | 4 | adantr |  | 
						
							| 12 | 5 | adantr |  | 
						
							| 13 | 8 | adantr |  | 
						
							| 14 | 9 | necomd |  | 
						
							| 15 | 14 | adantr |  | 
						
							| 16 | 6 | adantr |  | 
						
							| 17 | 7 | necomd |  | 
						
							| 18 | 17 | adantr |  | 
						
							| 19 | 10 | adantr |  | 
						
							| 20 | 1 2 3 11 16 12 13 18 19 | lncom |  | 
						
							| 21 | 1 2 3 11 12 13 16 15 20 18 | lnrot1 |  | 
						
							| 22 | 1 3 2 4 5 6 7 | tglnssp |  | 
						
							| 23 | 22 | sselda |  | 
						
							| 24 |  | simpr |  | 
						
							| 25 | 1 2 3 11 12 13 15 16 18 21 23 24 | tglineeltr |  | 
						
							| 26 | 4 | adantr |  | 
						
							| 27 | 5 | adantr |  | 
						
							| 28 | 6 | adantr |  | 
						
							| 29 | 7 | adantr |  | 
						
							| 30 | 8 | adantr |  | 
						
							| 31 | 9 | adantr |  | 
						
							| 32 | 10 | adantr |  | 
						
							| 33 | 1 3 2 4 5 8 14 | tglnssp |  | 
						
							| 34 | 33 | sselda |  | 
						
							| 35 |  | simpr |  | 
						
							| 36 | 1 2 3 26 27 28 29 30 31 32 34 35 | tglineeltr |  | 
						
							| 37 | 25 36 | impbida |  | 
						
							| 38 | 37 | eqrdv |  |