Metamath Proof Explorer


Theorem thincciso3

Description: Categories isomorphic to a thin category are thin. Example 3.26(2) of Adamek p. 33. Note that "thincciso2.u" is redundant thanks to elbasfv . (Contributed by Zhi Wang, 18-Oct-2025)

Ref Expression
Hypotheses thincciso2.c C = CatCat U
thincciso2.b B = Base C
thincciso2.u φ U V
thincciso2.x φ X B
thincciso2.y φ Y B
thincciso2.i I = Iso C
thincciso2.f φ F X I Y
thincciso3.xt φ X ThinCat
Assertion thincciso3 φ Y ThinCat

Proof

Step Hyp Ref Expression
1 thincciso2.c C = CatCat U
2 thincciso2.b B = Base C
3 thincciso2.u φ U V
4 thincciso2.x φ X B
5 thincciso2.y φ Y B
6 thincciso2.i I = Iso C
7 thincciso2.f φ F X I Y
8 thincciso3.xt φ X ThinCat
9 eqid Inv C = Inv C
10 1 catccat U V C Cat
11 3 10 syl φ C Cat
12 2 9 11 4 5 6 invf φ X Inv C Y : X I Y Y I X
13 12 7 ffvelcdmd φ X Inv C Y F Y I X
14 1 2 3 5 4 6 13 8 thincciso2 φ Y ThinCat