Description: Example theorem demonstrating decimal expansions. (Contributed by Thierry Arnoux, 27-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | threehalves | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3re | |
|
2 | 2re | |
|
3 | 2ne0 | |
|
4 | 1 2 3 | redivcli | |
5 | 4 | recni | |
6 | 1nn0 | |
|
7 | 5re | |
|
8 | dpcl | |
|
9 | 6 7 8 | mp2an | |
10 | 9 | recni | |
11 | 2cnne0 | |
|
12 | 5 10 11 | 3pm3.2i | |
13 | 5nn0 | |
|
14 | 3nn0 | |
|
15 | 0nn0 | |
|
16 | eqid | |
|
17 | df-2 | |
|
18 | 17 | oveq1i | |
19 | 2p1e3 | |
|
20 | 18 19 | eqtr3i | |
21 | 5p5e10 | |
|
22 | 6 13 6 13 16 16 20 15 21 | decaddc | |
23 | 6 13 6 13 14 15 22 | dpadd | |
24 | 14 | dp0u | |
25 | 23 24 | eqtri | |
26 | 10 | times2i | |
27 | 1 | recni | |
28 | 11 | simpli | |
29 | 27 28 3 | divcan1i | |
30 | 25 26 29 | 3eqtr4ri | |
31 | mulcan2 | |
|
32 | 31 | biimpa | |
33 | 12 30 32 | mp2an | |