Metamath Proof Explorer


Theorem threehalves

Description: Example theorem demonstrating decimal expansions. (Contributed by Thierry Arnoux, 27-Dec-2021)

Ref Expression
Assertion threehalves 32=1 .5

Proof

Step Hyp Ref Expression
1 3re 3
2 2re 2
3 2ne0 20
4 1 2 3 redivcli 32
5 4 recni 32
6 1nn0 10
7 5re 5
8 dpcl 1051 .5
9 6 7 8 mp2an 1 .5
10 9 recni 1 .5
11 2cnne0 220
12 5 10 11 3pm3.2i 321 .5220
13 5nn0 50
14 3nn0 30
15 0nn0 00
16 eqid 15=15
17 df-2 2=1+1
18 17 oveq1i 2+1=1+1+1
19 2p1e3 2+1=3
20 18 19 eqtr3i 1+1+1=3
21 5p5e10 5+5=10
22 6 13 6 13 16 16 20 15 21 decaddc 15+15=30
23 6 13 6 13 14 15 22 dpadd 1 .5+1 .5=3 .0
24 14 dp0u 3 .0=3
25 23 24 eqtri 1 .5+1 .5=3
26 10 times2i 1 .52=1 .5+1 .5
27 1 recni 3
28 11 simpli 2
29 27 28 3 divcan1i 322=3
30 25 26 29 3eqtr4ri 322= 1 .52
31 mulcan2 321 .5220322= 1 .5232=1 .5
32 31 biimpa 321 .5220322= 1 .5232=1 .5
33 12 30 32 mp2an 32=1 .5