| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3re |  |-  3 e. RR | 
						
							| 2 |  | 2re |  |-  2 e. RR | 
						
							| 3 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 4 | 1 2 3 | redivcli |  |-  ( 3 / 2 ) e. RR | 
						
							| 5 | 4 | recni |  |-  ( 3 / 2 ) e. CC | 
						
							| 6 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 7 |  | 5re |  |-  5 e. RR | 
						
							| 8 |  | dpcl |  |-  ( ( 1 e. NN0 /\ 5 e. RR ) -> ( 1 . 5 ) e. RR ) | 
						
							| 9 | 6 7 8 | mp2an |  |-  ( 1 . 5 ) e. RR | 
						
							| 10 | 9 | recni |  |-  ( 1 . 5 ) e. CC | 
						
							| 11 |  | 2cnne0 |  |-  ( 2 e. CC /\ 2 =/= 0 ) | 
						
							| 12 | 5 10 11 | 3pm3.2i |  |-  ( ( 3 / 2 ) e. CC /\ ( 1 . 5 ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) | 
						
							| 13 |  | 5nn0 |  |-  5 e. NN0 | 
						
							| 14 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 15 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 16 |  | eqid |  |-  ; 1 5 = ; 1 5 | 
						
							| 17 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 18 | 17 | oveq1i |  |-  ( 2 + 1 ) = ( ( 1 + 1 ) + 1 ) | 
						
							| 19 |  | 2p1e3 |  |-  ( 2 + 1 ) = 3 | 
						
							| 20 | 18 19 | eqtr3i |  |-  ( ( 1 + 1 ) + 1 ) = 3 | 
						
							| 21 |  | 5p5e10 |  |-  ( 5 + 5 ) = ; 1 0 | 
						
							| 22 | 6 13 6 13 16 16 20 15 21 | decaddc |  |-  ( ; 1 5 + ; 1 5 ) = ; 3 0 | 
						
							| 23 | 6 13 6 13 14 15 22 | dpadd |  |-  ( ( 1 . 5 ) + ( 1 . 5 ) ) = ( 3 . 0 ) | 
						
							| 24 | 14 | dp0u |  |-  ( 3 . 0 ) = 3 | 
						
							| 25 | 23 24 | eqtri |  |-  ( ( 1 . 5 ) + ( 1 . 5 ) ) = 3 | 
						
							| 26 | 10 | times2i |  |-  ( ( 1 . 5 ) x. 2 ) = ( ( 1 . 5 ) + ( 1 . 5 ) ) | 
						
							| 27 | 1 | recni |  |-  3 e. CC | 
						
							| 28 | 11 | simpli |  |-  2 e. CC | 
						
							| 29 | 27 28 3 | divcan1i |  |-  ( ( 3 / 2 ) x. 2 ) = 3 | 
						
							| 30 | 25 26 29 | 3eqtr4ri |  |-  ( ( 3 / 2 ) x. 2 ) = ( ( 1 . 5 ) x. 2 ) | 
						
							| 31 |  | mulcan2 |  |-  ( ( ( 3 / 2 ) e. CC /\ ( 1 . 5 ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( 3 / 2 ) x. 2 ) = ( ( 1 . 5 ) x. 2 ) <-> ( 3 / 2 ) = ( 1 . 5 ) ) ) | 
						
							| 32 | 31 | biimpa |  |-  ( ( ( ( 3 / 2 ) e. CC /\ ( 1 . 5 ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) /\ ( ( 3 / 2 ) x. 2 ) = ( ( 1 . 5 ) x. 2 ) ) -> ( 3 / 2 ) = ( 1 . 5 ) ) | 
						
							| 33 | 12 30 32 | mp2an |  |-  ( 3 / 2 ) = ( 1 . 5 ) |