| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 2 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 3 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 4 | 1 2 3 | redivcli | ⊢ ( 3  /  2 )  ∈  ℝ | 
						
							| 5 | 4 | recni | ⊢ ( 3  /  2 )  ∈  ℂ | 
						
							| 6 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 7 |  | 5re | ⊢ 5  ∈  ℝ | 
						
							| 8 |  | dpcl | ⊢ ( ( 1  ∈  ℕ0  ∧  5  ∈  ℝ )  →  ( 1 . 5 )  ∈  ℝ ) | 
						
							| 9 | 6 7 8 | mp2an | ⊢ ( 1 . 5 )  ∈  ℝ | 
						
							| 10 | 9 | recni | ⊢ ( 1 . 5 )  ∈  ℂ | 
						
							| 11 |  | 2cnne0 | ⊢ ( 2  ∈  ℂ  ∧  2  ≠  0 ) | 
						
							| 12 | 5 10 11 | 3pm3.2i | ⊢ ( ( 3  /  2 )  ∈  ℂ  ∧  ( 1 . 5 )  ∈  ℂ  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 ) ) | 
						
							| 13 |  | 5nn0 | ⊢ 5  ∈  ℕ0 | 
						
							| 14 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 15 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 16 |  | eqid | ⊢ ; 1 5  =  ; 1 5 | 
						
							| 17 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 18 | 17 | oveq1i | ⊢ ( 2  +  1 )  =  ( ( 1  +  1 )  +  1 ) | 
						
							| 19 |  | 2p1e3 | ⊢ ( 2  +  1 )  =  3 | 
						
							| 20 | 18 19 | eqtr3i | ⊢ ( ( 1  +  1 )  +  1 )  =  3 | 
						
							| 21 |  | 5p5e10 | ⊢ ( 5  +  5 )  =  ; 1 0 | 
						
							| 22 | 6 13 6 13 16 16 20 15 21 | decaddc | ⊢ ( ; 1 5  +  ; 1 5 )  =  ; 3 0 | 
						
							| 23 | 6 13 6 13 14 15 22 | dpadd | ⊢ ( ( 1 . 5 )  +  ( 1 . 5 ) )  =  ( 3 . 0 ) | 
						
							| 24 | 14 | dp0u | ⊢ ( 3 . 0 )  =  3 | 
						
							| 25 | 23 24 | eqtri | ⊢ ( ( 1 . 5 )  +  ( 1 . 5 ) )  =  3 | 
						
							| 26 | 10 | times2i | ⊢ ( ( 1 . 5 )  ·  2 )  =  ( ( 1 . 5 )  +  ( 1 . 5 ) ) | 
						
							| 27 | 1 | recni | ⊢ 3  ∈  ℂ | 
						
							| 28 | 11 | simpli | ⊢ 2  ∈  ℂ | 
						
							| 29 | 27 28 3 | divcan1i | ⊢ ( ( 3  /  2 )  ·  2 )  =  3 | 
						
							| 30 | 25 26 29 | 3eqtr4ri | ⊢ ( ( 3  /  2 )  ·  2 )  =  ( ( 1 . 5 )  ·  2 ) | 
						
							| 31 |  | mulcan2 | ⊢ ( ( ( 3  /  2 )  ∈  ℂ  ∧  ( 1 . 5 )  ∈  ℂ  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 ) )  →  ( ( ( 3  /  2 )  ·  2 )  =  ( ( 1 . 5 )  ·  2 )  ↔  ( 3  /  2 )  =  ( 1 . 5 ) ) ) | 
						
							| 32 | 31 | biimpa | ⊢ ( ( ( ( 3  /  2 )  ∈  ℂ  ∧  ( 1 . 5 )  ∈  ℂ  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 ) )  ∧  ( ( 3  /  2 )  ·  2 )  =  ( ( 1 . 5 )  ·  2 ) )  →  ( 3  /  2 )  =  ( 1 . 5 ) ) | 
						
							| 33 | 12 30 32 | mp2an | ⊢ ( 3  /  2 )  =  ( 1 . 5 ) |