Metamath Proof Explorer


Theorem tng0

Description: The group identity of a structure augmented with a norm. (Contributed by Mario Carneiro, 4-Oct-2015) (Revised by AV, 31-Oct-2024)

Ref Expression
Hypotheses tngbas.t T=GtoNrmGrpN
tng0.2 0˙=0G
Assertion tng0 NV0˙=0T

Proof

Step Hyp Ref Expression
1 tngbas.t T=GtoNrmGrpN
2 tng0.2 0˙=0G
3 eqidd NVBaseG=BaseG
4 eqid BaseG=BaseG
5 1 4 tngbas NVBaseG=BaseT
6 eqid +G=+G
7 1 6 tngplusg NV+G=+T
8 7 oveqdr NVxBaseGyBaseGx+Gy=x+Ty
9 3 5 8 grpidpropd NV0G=0T
10 2 9 eqtrid NV0˙=0T