Metamath Proof Explorer


Theorem toponsspwpw

Description: The set of topologies on a set is included in the double power set of that set. (Contributed by BJ, 29-Apr-2021)

Ref Expression
Assertion toponsspwpw TopOnA𝒫𝒫A

Proof

Step Hyp Ref Expression
1 rabssab yTop|A=yy|A=y
2 eqcom A=yy=A
3 2 abbii y|A=y=y|y=A
4 1 3 sseqtri yTop|A=yy|y=A
5 pwpwssunieq y|y=A𝒫𝒫A
6 4 5 sstri yTop|A=y𝒫𝒫A
7 pwexg AV𝒫AV
8 7 pwexd AV𝒫𝒫AV
9 ssexg yTop|A=y𝒫𝒫A𝒫𝒫AVyTop|A=yV
10 6 8 9 sylancr AVyTop|A=yV
11 eqeq1 x=Ax=yA=y
12 11 rabbidv x=AyTop|x=y=yTop|A=y
13 df-topon TopOn=xVyTop|x=y
14 12 13 fvmptg AVyTop|A=yVTopOnA=yTop|A=y
15 10 14 mpdan AVTopOnA=yTop|A=y
16 15 6 eqsstrdi AVTopOnA𝒫𝒫A
17 fvprc ¬AVTopOnA=
18 0ss 𝒫𝒫A
19 17 18 eqsstrdi ¬AVTopOnA𝒫𝒫A
20 16 19 pm2.61i TopOnA𝒫𝒫A