Metamath Proof Explorer


Theorem tpid3gVD

Description: Virtual deduction proof of tpid3g . (Contributed by Alan Sare, 24-Oct-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion tpid3gVD ABACDA

Proof

Step Hyp Ref Expression
1 idn2 AB,x=Ax=A
2 3mix3 x=Ax=Cx=Dx=A
3 1 2 e2 AB,x=Ax=Cx=Dx=A
4 abid xx|x=Cx=Dx=Ax=Cx=Dx=A
5 3 4 e2bir AB,x=Axx|x=Cx=Dx=A
6 dftp2 CDA=x|x=Cx=Dx=A
7 6 eleq2i xCDAxx|x=Cx=Dx=A
8 5 7 e2bir AB,x=AxCDA
9 eleq1 x=AxCDAACDA
10 9 biimpd x=AxCDAACDA
11 1 8 10 e22 AB,x=AACDA
12 11 in2 ABx=AACDA
13 12 gen11 ABxx=AACDA
14 19.23v xx=AACDAxx=AACDA
15 13 14 e1bi ABxx=AACDA
16 idn1 ABAB
17 elisset ABxx=A
18 16 17 e1a ABxx=A
19 id xx=AACDAxx=AACDA
20 15 18 19 e11 ABACDA
21 20 in1 ABACDA