Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
ZF Set Theory - add the Axiom of Union
Function transposition
tposf1o
Next ⟩
tposid
Metamath Proof Explorer
Ascii
Unicode
Theorem
tposf1o
Description:
Condition of a bijective transposition.
(Contributed by
Zhi Wang
, 5-Oct-2025)
Ref
Expression
Assertion
tposf1o
⊢
F
:
A
×
B
⟶
1-1 onto
C
→
tpos
F
:
B
×
A
⟶
1-1 onto
C
Proof
Step
Hyp
Ref
Expression
1
relxp
⊢
Rel
⁡
A
×
B
2
tposf1o2
⊢
Rel
⁡
A
×
B
→
F
:
A
×
B
⟶
1-1 onto
C
→
tpos
F
:
A
×
B
-1
⟶
1-1 onto
C
3
1
2
ax-mp
⊢
F
:
A
×
B
⟶
1-1 onto
C
→
tpos
F
:
A
×
B
-1
⟶
1-1 onto
C
4
cnvxp
⊢
A
×
B
-1
=
B
×
A
5
f1oeq2
⊢
A
×
B
-1
=
B
×
A
→
tpos
F
:
A
×
B
-1
⟶
1-1 onto
C
↔
tpos
F
:
B
×
A
⟶
1-1 onto
C
6
4
5
ax-mp
⊢
tpos
F
:
A
×
B
-1
⟶
1-1 onto
C
↔
tpos
F
:
B
×
A
⟶
1-1 onto
C
7
3
6
sylib
⊢
F
:
A
×
B
⟶
1-1 onto
C
→
tpos
F
:
B
×
A
⟶
1-1 onto
C