Metamath Proof Explorer


Theorem tposrescnv

Description: The transposition restricted to a converse is the transposition of the restricted class, with the empty set removed from the domain. Note that the right hand side is a more useful form of ` ( tpos ( F |`` R ) |`( _V \ { (/) } ) ) by df-tpos . (Contributed by Zhi Wang, 6-Oct-2025)

Ref Expression
Assertion tposrescnv tpos F R -1 = F x dom F R -1 x -1

Proof

Step Hyp Ref Expression
1 df-tpos tpos F = F x dom F -1 x -1
2 1 reseq1i tpos F R -1 = F x dom F -1 x -1 R -1
3 resco F x dom F -1 x -1 R -1 = F x dom F -1 x -1 R -1
4 resmpt3 x dom F -1 x -1 R -1 = x dom F -1 R -1 x -1
5 cnvin R dom F -1 = R -1 dom F -1
6 dmres dom F R = R dom F
7 6 cnveqi dom F R -1 = R dom F -1
8 incom dom F -1 R -1 = R -1 dom F -1
9 indi R -1 dom F -1 = R -1 dom F -1 R -1
10 relcnv Rel R -1
11 0nelrel0 Rel R -1 ¬ R -1
12 10 11 ax-mp ¬ R -1
13 disjsn R -1 = ¬ R -1
14 12 13 mpbir R -1 =
15 14 uneq2i R -1 dom F -1 R -1 = R -1 dom F -1
16 un0 R -1 dom F -1 = R -1 dom F -1
17 15 16 eqtri R -1 dom F -1 R -1 = R -1 dom F -1
18 8 9 17 3eqtri dom F -1 R -1 = R -1 dom F -1
19 5 7 18 3eqtr4ri dom F -1 R -1 = dom F R -1
20 19 mpteq1i x dom F -1 R -1 x -1 = x dom F R -1 x -1
21 4 20 eqtri x dom F -1 x -1 R -1 = x dom F R -1 x -1
22 21 coeq2i F x dom F -1 x -1 R -1 = F x dom F R -1 x -1
23 2 3 22 3eqtri tpos F R -1 = F x dom F R -1 x -1