Metamath Proof Explorer


Theorem tppreqb

Description: An unordered triple is an unordered pair if and only if one of its elements is a proper class or is identical with one of the another elements. (Contributed by Alexander van der Vekens, 15-Jan-2018)

Ref Expression
Assertion tppreqb ¬ C V C A C B A B C = A B

Proof

Step Hyp Ref Expression
1 3ianor ¬ C V C A C B ¬ C V ¬ C A ¬ C B
2 df-3or ¬ C V ¬ C A ¬ C B ¬ C V ¬ C A ¬ C B
3 1 2 bitri ¬ C V C A C B ¬ C V ¬ C A ¬ C B
4 orass ¬ C V ¬ C A ¬ C B ¬ C V ¬ C V ¬ C A ¬ C B ¬ C V
5 ianor ¬ C V C A ¬ C V ¬ C A
6 tpprceq3 ¬ C V C A B A C = B A
7 5 6 sylbir ¬ C V ¬ C A B A C = B A
8 tpcoma B A C = A B C
9 prcom B A = A B
10 7 8 9 3eqtr3g ¬ C V ¬ C A A B C = A B
11 orcom ¬ C B ¬ C V ¬ C V ¬ C B
12 ianor ¬ C V C B ¬ C V ¬ C B
13 11 12 bitr4i ¬ C B ¬ C V ¬ C V C B
14 tpprceq3 ¬ C V C B A B C = A B
15 13 14 sylbi ¬ C B ¬ C V A B C = A B
16 10 15 jaoi ¬ C V ¬ C A ¬ C B ¬ C V A B C = A B
17 4 16 sylbi ¬ C V ¬ C A ¬ C B ¬ C V A B C = A B
18 17 orcs ¬ C V ¬ C A ¬ C B A B C = A B
19 3 18 sylbi ¬ C V C A C B A B C = A B
20 df-tp A B C = A B C
21 20 eqeq1i A B C = A B A B C = A B
22 ssequn2 C A B A B C = A B
23 snssg C V C A B C A B
24 elpri C A B C = A C = B
25 nne ¬ C A C = A
26 3mix2 ¬ C A ¬ C V ¬ C A ¬ C B
27 25 26 sylbir C = A ¬ C V ¬ C A ¬ C B
28 nne ¬ C B C = B
29 3mix3 ¬ C B ¬ C V ¬ C A ¬ C B
30 28 29 sylbir C = B ¬ C V ¬ C A ¬ C B
31 27 30 jaoi C = A C = B ¬ C V ¬ C A ¬ C B
32 24 31 syl C A B ¬ C V ¬ C A ¬ C B
33 23 32 syl6bir C V C A B ¬ C V ¬ C A ¬ C B
34 3mix1 ¬ C V ¬ C V ¬ C A ¬ C B
35 34 a1d ¬ C V C A B ¬ C V ¬ C A ¬ C B
36 33 35 pm2.61i C A B ¬ C V ¬ C A ¬ C B
37 36 1 sylibr C A B ¬ C V C A C B
38 22 37 sylbir A B C = A B ¬ C V C A C B
39 21 38 sylbi A B C = A B ¬ C V C A C B
40 19 39 impbii ¬ C V C A C B A B C = A B