Metamath Proof Explorer


Theorem trcoss

Description: Sufficient condition for the transitivity of cosets by R . (Contributed by Peter Mazsa, 26-Dec-2018)

Ref Expression
Assertion trcoss y*uuRyxyzxRyyRzxRz

Proof

Step Hyp Ref Expression
1 moantr *uuRyuuRxuRyuuRyuRzuuRxuRz
2 brcoss xVyVxRyuuRxuRy
3 2 el2v xRyuuRxuRy
4 brcoss yVzVyRzuuRyuRz
5 4 el2v yRzuuRyuRz
6 3 5 anbi12i xRyyRzuuRxuRyuuRyuRz
7 brcoss xVzVxRzuuRxuRz
8 7 el2v xRzuuRxuRz
9 1 6 8 3imtr4g *uuRyxRyyRzxRz
10 9 alrimiv *uuRyzxRyyRzxRz
11 10 alimi y*uuRyyzxRyyRzxRz
12 11 alrimiv y*uuRyxyzxRyyRzxRz