Metamath Proof Explorer


Theorem trintALT

Description: The intersection of a class of transitive sets is transitive. Exercise 5(b) of Enderton p. 73. trintALT is an alternate proof of trint . trintALT is trintALTVD without virtual deductions and was automatically derived from trintALTVD using the tools program translate..without..overwriting.cmd and the Metamath program "MM-PA> MINIMIZE__WITH *" command. (Contributed by Alan Sare, 17-Apr-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion trintALT xATrxTrA

Proof

Step Hyp Ref Expression
1 simpl zyyAzy
2 1 a1i xATrxzyyAzy
3 iidn3 xATrxzyyAqAqA
4 id xATrxxATrx
5 rspsbc qAxATrx[˙q/x]˙Trx
6 3 4 5 ee31 xATrxzyyAqA[˙q/x]˙Trx
7 trsbc qA[˙q/x]˙TrxTrq
8 7 biimpd qA[˙q/x]˙TrxTrq
9 3 6 8 ee33 xATrxzyyAqATrq
10 simpr zyyAyA
11 10 a1i xATrxzyyAyA
12 elintg yAyAqAyq
13 12 ibi yAqAyq
14 11 13 syl6 xATrxzyyAqAyq
15 rsp qAyqqAyq
16 14 15 syl6 xATrxzyyAqAyq
17 trel Trqzyyqzq
18 17 expd Trqzyyqzq
19 9 2 16 18 ee323 xATrxzyyAqAzq
20 19 ralrimdv xATrxzyyAqAzq
21 elintg zyzAqAzq
22 21 biimprd zyqAzqzA
23 2 20 22 syl6c xATrxzyyAzA
24 23 alrimivv xATrxzyzyyAzA
25 dftr2 TrAzyzyyAzA
26 24 25 sylibr xATrxTrA