Metamath Proof Explorer


Theorem trivsubgsnd

Description: The only subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses trivsubgsnd.1 B=BaseG
trivsubgsnd.2 0˙=0G
trivsubgsnd.3 φGGrp
trivsubgsnd.4 φB=0˙
Assertion trivsubgsnd φSubGrpG=B

Proof

Step Hyp Ref Expression
1 trivsubgsnd.1 B=BaseG
2 trivsubgsnd.2 0˙=0G
3 trivsubgsnd.3 φGGrp
4 trivsubgsnd.4 φB=0˙
5 3 adantr φxSubGrpGGGrp
6 4 adantr φxSubGrpGB=0˙
7 simpr φxSubGrpGxSubGrpG
8 1 2 5 6 7 trivsubgd φxSubGrpGx=B
9 velsn xBx=B
10 8 9 sylibr φxSubGrpGxB
11 10 ex φxSubGrpGxB
12 11 ssrdv φSubGrpGB
13 1 subgid GGrpBSubGrpG
14 3 13 syl φBSubGrpG
15 14 snssd φBSubGrpG
16 12 15 eqssd φSubGrpG=B