| Step | Hyp | Ref | Expression | 
						
							| 1 |  | trl0a.z |  | 
						
							| 2 |  | trl0a.a |  | 
						
							| 3 |  | trl0a.h |  | 
						
							| 4 |  | trl0a.t |  | 
						
							| 5 |  | trl0a.r |  | 
						
							| 6 |  | df-ne |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 | 7 2 3 | lhpexnle |  | 
						
							| 9 | 8 | ad2antrr |  | 
						
							| 10 |  | simplll |  | 
						
							| 11 |  | simpr |  | 
						
							| 12 |  | simpllr |  | 
						
							| 13 |  | simplr |  | 
						
							| 14 | 10 | adantr |  | 
						
							| 15 |  | simplr |  | 
						
							| 16 | 12 | adantr |  | 
						
							| 17 |  | simpr |  | 
						
							| 18 | 7 1 2 3 4 5 | trl0 |  | 
						
							| 19 | 14 15 16 17 18 | syl112anc |  | 
						
							| 20 | 19 | ex |  | 
						
							| 21 | 20 | necon3d |  | 
						
							| 22 | 13 21 | mpd |  | 
						
							| 23 | 7 2 3 4 5 | trlat |  | 
						
							| 24 | 10 11 12 22 23 | syl112anc |  | 
						
							| 25 | 9 24 | rexlimddv |  | 
						
							| 26 | 25 | ex |  | 
						
							| 27 | 6 26 | biimtrrid |  | 
						
							| 28 | 27 | orrd |  | 
						
							| 29 | 28 | orcomd |  |