Metamath Proof Explorer


Theorem trlid0

Description: The trace of the identity translation is zero. (Contributed by NM, 11-Jun-2013)

Ref Expression
Hypotheses trlid0.b B=BaseK
trlid0.z 0˙=0.K
trlid0.h H=LHypK
trlid0.r R=trLKW
Assertion trlid0 KHLWHRIB=0˙

Proof

Step Hyp Ref Expression
1 trlid0.b B=BaseK
2 trlid0.z 0˙=0.K
3 trlid0.h H=LHypK
4 trlid0.r R=trLKW
5 eqid K=K
6 eqid AtomsK=AtomsK
7 5 6 3 lhpexnle KHLWHpAtomsK¬pKW
8 simpl KHLWHpAtomsK¬pKWKHLWH
9 simpr KHLWHpAtomsK¬pKWpAtomsK¬pKW
10 eqid LTrnKW=LTrnKW
11 1 3 10 idltrn KHLWHIBLTrnKW
12 11 adantr KHLWHpAtomsK¬pKWIBLTrnKW
13 eqid IB=IB
14 1 5 6 3 10 ltrnideq KHLWHIBLTrnKWpAtomsK¬pKWIB=IBIBp=p
15 8 12 9 14 syl3anc KHLWHpAtomsK¬pKWIB=IBIBp=p
16 13 15 mpbii KHLWHpAtomsK¬pKWIBp=p
17 5 2 6 3 10 4 trl0 KHLWHpAtomsK¬pKWIBLTrnKWIBp=pRIB=0˙
18 8 9 12 16 17 syl112anc KHLWHpAtomsK¬pKWRIB=0˙
19 7 18 rexlimddv KHLWHRIB=0˙