| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trlnidatb.b |
|
| 2 |
|
trlnidatb.a |
|
| 3 |
|
trlnidatb.h |
|
| 4 |
|
trlnidatb.t |
|
| 5 |
|
trlnidatb.r |
|
| 6 |
1 2 3 4 5
|
trlnidat |
|
| 7 |
6
|
3expia |
|
| 8 |
|
eqid |
|
| 9 |
8 2 3
|
lhpexnle |
|
| 10 |
9
|
adantr |
|
| 11 |
1 8 2 3 4
|
ltrnideq |
|
| 12 |
11
|
3expa |
|
| 13 |
|
simp1l |
|
| 14 |
|
simp2 |
|
| 15 |
|
simp1r |
|
| 16 |
|
simp3 |
|
| 17 |
|
eqid |
|
| 18 |
8 17 2 3 4 5
|
trl0 |
|
| 19 |
13 14 15 16 18
|
syl112anc |
|
| 20 |
19
|
3expia |
|
| 21 |
|
simplll |
|
| 22 |
|
hlatl |
|
| 23 |
17 2
|
atn0 |
|
| 24 |
23
|
ex |
|
| 25 |
21 22 24
|
3syl |
|
| 26 |
25
|
necon2bd |
|
| 27 |
20 26
|
syld |
|
| 28 |
12 27
|
sylbid |
|
| 29 |
10 28
|
rexlimddv |
|
| 30 |
29
|
necon2ad |
|
| 31 |
7 30
|
impbid |
|