Metamath Proof Explorer


Theorem trpred0

Description: The class of transitive predecessors is empty when A is empty. (Contributed by Scott Fenton, 30-Apr-2012)

Ref Expression
Assertion trpred0 TrPred R X =

Proof

Step Hyp Ref Expression
1 dftrpred2 TrPred R X = i ω rec a V y a Pred R y Pred R X ω i
2 pred0 Pred R y =
3 2 a1i y a Pred R y =
4 3 iuneq2i y a Pred R y = y a
5 iun0 y a =
6 4 5 eqtri y a Pred R y =
7 6 mpteq2i a V y a Pred R y = a V
8 pred0 Pred R X =
9 rdgeq12 a V y a Pred R y = a V Pred R X = rec a V y a Pred R y Pred R X = rec a V
10 7 8 9 mp2an rec a V y a Pred R y Pred R X = rec a V
11 10 reseq1i rec a V y a Pred R y Pred R X ω = rec a V ω
12 11 fveq1i rec a V y a Pred R y Pred R X ω i = rec a V ω i
13 nn0suc i ω i = j ω i = suc j
14 fveq2 i = rec a V ω i = rec a V ω
15 0ex V
16 fr0g V rec a V ω =
17 15 16 ax-mp rec a V ω =
18 14 17 eqtrdi i = rec a V ω i =
19 nfcv _ a
20 nfcv _ a j
21 eqid rec a V ω = rec a V ω
22 eqidd a = rec a V ω j =
23 19 20 19 21 22 frsucmpt j ω V rec a V ω suc j =
24 15 23 mpan2 j ω rec a V ω suc j =
25 fveqeq2 i = suc j rec a V ω i = rec a V ω suc j =
26 24 25 syl5ibrcom j ω i = suc j rec a V ω i =
27 26 rexlimiv j ω i = suc j rec a V ω i =
28 18 27 jaoi i = j ω i = suc j rec a V ω i =
29 13 28 syl i ω rec a V ω i =
30 12 29 eqtrid i ω rec a V y a Pred R y Pred R X ω i =
31 30 iuneq2i i ω rec a V y a Pred R y Pred R X ω i = i ω
32 iun0 i ω =
33 1 31 32 3eqtri TrPred R X =