Metamath Proof Explorer


Theorem trsbc

Description: Formula-building inference rule for class substitution, substituting a class variable for the setvar variable of the transitivity predicate. trsbc is trsbcVD without virtual deductions and was automatically derived from trsbcVD using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Mar-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion trsbc AV[˙A/x]˙TrxTrA

Proof

Step Hyp Ref Expression
1 sbcal [˙A/x]˙zyzyyxzxz[˙A/x]˙yzyyxzx
2 sbcal [˙A/x]˙yzyyxzxy[˙A/x]˙zyyxzx
3 sbcim2g AV[˙A/x]˙zyyxzx[˙A/x]˙zy[˙A/x]˙yx[˙A/x]˙zx
4 sbcg AV[˙A/x]˙zyzy
5 sbcel2gv AV[˙A/x]˙yxyA
6 sbcel2gv AV[˙A/x]˙zxzA
7 imbi13 [˙A/x]˙zyzy[˙A/x]˙yxyA[˙A/x]˙zxzA[˙A/x]˙zy[˙A/x]˙yx[˙A/x]˙zxzyyAzA
8 4 5 6 7 syl3c AV[˙A/x]˙zy[˙A/x]˙yx[˙A/x]˙zxzyyAzA
9 3 8 bitrd AV[˙A/x]˙zyyxzxzyyAzA
10 pm3.31 zyyxzxzyyxzx
11 pm3.3 zyyxzxzyyxzx
12 10 11 impbii zyyxzxzyyxzx
13 12 sbcbii [˙A/x]˙zyyxzx[˙A/x]˙zyyxzx
14 pm3.31 zyyAzAzyyAzA
15 pm3.3 zyyAzAzyyAzA
16 14 15 impbii zyyAzAzyyAzA
17 9 13 16 3bitr3g AV[˙A/x]˙zyyxzxzyyAzA
18 17 albidv AVy[˙A/x]˙zyyxzxyzyyAzA
19 2 18 bitrid AV[˙A/x]˙yzyyxzxyzyyAzA
20 19 albidv AVz[˙A/x]˙yzyyxzxzyzyyAzA
21 1 20 bitrid AV[˙A/x]˙zyzyyxzxzyzyyAzA
22 dftr2 Trxzyzyyxzx
23 22 sbcbii [˙A/x]˙Trx[˙A/x]˙zyzyyxzx
24 dftr2 TrAzyzyyAzA
25 21 23 24 3bitr4g AV[˙A/x]˙TrxTrA