Metamath Proof Explorer


Theorem tskpr

Description: If A and B are members of a Tarski class, their unordered pair is also an element of the class. JFM CLASSES2 th. 3 (partly). (Contributed by FL, 22-Feb-2011) (Proof shortened by Mario Carneiro, 20-Jun-2013)

Ref Expression
Assertion tskpr T Tarski A T B T A B T

Proof

Step Hyp Ref Expression
1 simp1 T Tarski A T B T T Tarski
2 prssi A T B T A B T
3 2 3adant1 T Tarski A T B T A B T
4 prfi A B Fin
5 isfinite A B Fin A B ω
6 4 5 mpbi A B ω
7 ne0i A T T
8 tskinf T Tarski T ω T
9 7 8 sylan2 T Tarski A T ω T
10 sdomdomtr A B ω ω T A B T
11 6 9 10 sylancr T Tarski A T A B T
12 11 3adant3 T Tarski A T B T A B T
13 tskssel T Tarski A B T A B T A B T
14 1 3 12 13 syl3anc T Tarski A T B T A B T