Metamath Proof Explorer


Theorem tz6.26OLD

Description: Obsolete proof of tz6.26 as of 17-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 29-Jan-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Assertion tz6.26OLD RWeARSeABAByBPredRBy=

Proof

Step Hyp Ref Expression
1 wereu2 RWeARSeABAB∃!yBxB¬xRy
2 reurex ∃!yBxB¬xRyyBxB¬xRy
3 1 2 syl RWeARSeABAByBxB¬xRy
4 rabeq0 xB|xRy=xB¬xRy
5 dfrab3 xB|xRy=Bx|xRy
6 vex yV
7 6 dfpred2 PredRBy=Bx|xRy
8 5 7 eqtr4i xB|xRy=PredRBy
9 8 eqeq1i xB|xRy=PredRBy=
10 4 9 bitr3i xB¬xRyPredRBy=
11 10 rexbii yBxB¬xRyyBPredRBy=
12 3 11 sylib RWeARSeABAByBPredRBy=