Metamath Proof Explorer


Theorem tz7.48-3

Description: Proposition 7.48(3) of TakeutiZaring p. 51. (Contributed by NM, 9-Feb-1997)

Ref Expression
Hypothesis tz7.48.1 FFnOn
Assertion tz7.48-3 xOnFxAFx¬AV

Proof

Step Hyp Ref Expression
1 tz7.48.1 FFnOn
2 1 fndmi domF=On
3 onprc ¬OnV
4 2 3 eqneltri ¬domFV
5 1 tz7.48-2 xOnFxAFxFunF-1
6 funrnex domF-1VFunF-1ranF-1V
7 6 com12 FunF-1domF-1VranF-1V
8 df-rn ranF=domF-1
9 8 eleq1i ranFVdomF-1V
10 dfdm4 domF=ranF-1
11 10 eleq1i domFVranF-1V
12 7 9 11 3imtr4g FunF-1ranFVdomFV
13 5 12 syl xOnFxAFxranFVdomFV
14 4 13 mtoi xOnFxAFx¬ranFV
15 1 tz7.48-1 xOnFxAFxranFA
16 ssexg ranFAAVranFV
17 16 ex ranFAAVranFV
18 15 17 syl xOnFxAFxAVranFV
19 14 18 mtod xOnFxAFx¬AV