Metamath Proof Explorer


Theorem uffix2

Description: A classification of fixed ultrafilters. (Contributed by Mario Carneiro, 24-May-2015) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion uffix2 FUFilXFxXF=y𝒫X|xy

Proof

Step Hyp Ref Expression
1 ufilfil FUFilXFFilX
2 filn0 FFilXF
3 intssuni FFF
4 1 2 3 3syl FUFilXFF
5 filunibas FFilXF=X
6 1 5 syl FUFilXF=X
7 4 6 sseqtrd FUFilXFX
8 7 sseld FUFilXxFxX
9 8 pm4.71rd FUFilXxFxXxF
10 uffixfr FUFilXxFF=y𝒫X|xy
11 10 anbi2d FUFilXxXxFxXF=y𝒫X|xy
12 9 11 bitrd FUFilXxFxXF=y𝒫X|xy
13 12 exbidv FUFilXxxFxxXF=y𝒫X|xy
14 n0 FxxF
15 df-rex xXF=y𝒫X|xyxxXF=y𝒫X|xy
16 13 14 15 3bitr4g FUFilXFxXF=y𝒫X|xy