Metamath Proof Explorer


Theorem uhgr0edgfi

Description: A graph of order 0 (i.e. with 0 vertices) has a finite set of edges. (Contributed by Alexander van der Vekens, 5-Jan-2018) (Revised by AV, 10-Jan-2020) (Revised by AV, 8-Jun-2021)

Ref Expression
Assertion uhgr0edgfi GUHGraphVtxG=0EdgGFin

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 eqid EdgG=EdgG
3 1 2 uhgr0vsize0 GUHGraphVtxG=0EdgG=0
4 fvex EdgGV
5 hasheq0 EdgGVEdgG=0EdgG=
6 4 5 ax-mp EdgG=0EdgG=
7 0fin Fin
8 eleq1 EdgG=EdgGFinFin
9 7 8 mpbiri EdgG=EdgGFin
10 6 9 sylbi EdgG=0EdgGFin
11 3 10 syl GUHGraphVtxG=0EdgGFin