Metamath Proof Explorer


Theorem uhgr0vsize0

Description: The size of a hypergraph with no vertices (the null graph) is 0. (Contributed by Alexander van der Vekens, 5-Jan-2018) (Revised by AV, 7-Nov-2020)

Ref Expression
Hypotheses uhgr0v0e.v V=VtxG
uhgr0v0e.e E=EdgG
Assertion uhgr0vsize0 GUHGraphV=0E=0

Proof

Step Hyp Ref Expression
1 uhgr0v0e.v V=VtxG
2 uhgr0v0e.e E=EdgG
3 1 2 uhgr0v0e GUHGraphV=E=
4 3 ex GUHGraphV=E=
5 1 fvexi VV
6 hasheq0 VVV=0V=
7 5 6 ax-mp V=0V=
8 2 fvexi EV
9 hasheq0 EVE=0E=
10 8 9 ax-mp E=0E=
11 4 7 10 3imtr4g GUHGraphV=0E=0
12 11 imp GUHGraphV=0E=0