Metamath Proof Explorer


Theorem ulmcau2

Description: A sequence of functions converges uniformly iff it is uniformly Cauchy, which is to say that for every 0 < x there is a j such that for all j <_ k , m the functions F ( k ) and F ( m ) are uniformly within x of each other on S . (Contributed by Mario Carneiro, 1-Mar-2015)

Ref Expression
Hypotheses ulmcau.z Z=M
ulmcau.m φM
ulmcau.s φSV
ulmcau.f φF:ZS
Assertion ulmcau2 φFdomuSx+jZkjmkzSFkzFmz<x

Proof

Step Hyp Ref Expression
1 ulmcau.z Z=M
2 ulmcau.m φM
3 ulmcau.s φSV
4 ulmcau.f φF:ZS
5 1 2 3 4 ulmcau φFdomuSx+jZkjzSFkzFjz<x
6 1 2 3 4 ulmcaulem φx+jZkjzSFkzFjz<xx+jZkjmkzSFkzFmz<x
7 5 6 bitrd φFdomuSx+jZkjmkzSFkzFmz<x