Metamath Proof Explorer


Theorem unceq

Description: Equality theorem for uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021)

Ref Expression
Assertion unceq A=BuncurryA=uncurryB

Proof

Step Hyp Ref Expression
1 fveq1 A=BAx=Bx
2 1 breqd A=ByAxzyBxz
3 2 oprabbidv A=Bxyz|yAxz=xyz|yBxz
4 df-unc uncurryA=xyz|yAxz
5 df-unc uncurryB=xyz|yBxz
6 3 4 5 3eqtr4g A=BuncurryA=uncurryB