Metamath Proof Explorer


Theorem unfilem2

Description: Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 10-Nov-2002) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypotheses unfilem1.1 Aω
unfilem1.2 Bω
unfilem1.3 F=xBA+𝑜x
Assertion unfilem2 F:B1-1 ontoA+𝑜BA

Proof

Step Hyp Ref Expression
1 unfilem1.1 Aω
2 unfilem1.2 Bω
3 unfilem1.3 F=xBA+𝑜x
4 ovex A+𝑜xV
5 4 3 fnmpti FFnB
6 1 2 3 unfilem1 ranF=A+𝑜BA
7 df-fo F:BontoA+𝑜BAFFnBranF=A+𝑜BA
8 5 6 7 mpbir2an F:BontoA+𝑜BA
9 fof F:BontoA+𝑜BAF:BA+𝑜BA
10 8 9 ax-mp F:BA+𝑜BA
11 oveq2 x=zA+𝑜x=A+𝑜z
12 ovex A+𝑜zV
13 11 3 12 fvmpt zBFz=A+𝑜z
14 oveq2 x=wA+𝑜x=A+𝑜w
15 ovex A+𝑜wV
16 14 3 15 fvmpt wBFw=A+𝑜w
17 13 16 eqeqan12d zBwBFz=FwA+𝑜z=A+𝑜w
18 elnn zBBωzω
19 2 18 mpan2 zBzω
20 elnn wBBωwω
21 2 20 mpan2 wBwω
22 nnacan AωzωwωA+𝑜z=A+𝑜wz=w
23 1 19 21 22 mp3an3an zBwBA+𝑜z=A+𝑜wz=w
24 17 23 bitrd zBwBFz=Fwz=w
25 24 biimpd zBwBFz=Fwz=w
26 25 rgen2 zBwBFz=Fwz=w
27 dff13 F:B1-1A+𝑜BAF:BA+𝑜BAzBwBFz=Fwz=w
28 10 26 27 mpbir2an F:B1-1A+𝑜BA
29 df-f1o F:B1-1 ontoA+𝑜BAF:B1-1A+𝑜BAF:BontoA+𝑜BA
30 28 8 29 mpbir2an F:B1-1 ontoA+𝑜BA