Metamath Proof Explorer


Theorem unfilem3

Description: Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 16-Nov-2002) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion unfilem3 AωBωBA+𝑜BA

Proof

Step Hyp Ref Expression
1 oveq1 A=ifAωAA+𝑜B=ifAωA+𝑜B
2 id A=ifAωAA=ifAωA
3 1 2 difeq12d A=ifAωAA+𝑜BA=ifAωA+𝑜BifAωA
4 3 breq2d A=ifAωABA+𝑜BABifAωA+𝑜BifAωA
5 id B=ifBωBB=ifBωB
6 oveq2 B=ifBωBifAωA+𝑜B=ifAωA+𝑜ifBωB
7 6 difeq1d B=ifBωBifAωA+𝑜BifAωA=ifAωA+𝑜ifBωBifAωA
8 5 7 breq12d B=ifBωBBifAωA+𝑜BifAωAifBωBifAωA+𝑜ifBωBifAωA
9 peano1 ω
10 9 elimel ifBωBω
11 ovex ifAωA+𝑜ifBωBV
12 11 difexi ifAωA+𝑜ifBωBifAωAV
13 9 elimel ifAωAω
14 eqid xifBωBifAωA+𝑜x=xifBωBifAωA+𝑜x
15 13 10 14 unfilem2 xifBωBifAωA+𝑜x:ifBωB1-1 ontoifAωA+𝑜ifBωBifAωA
16 f1oen2g ifBωBωifAωA+𝑜ifBωBifAωAVxifBωBifAωA+𝑜x:ifBωB1-1 ontoifAωA+𝑜ifBωBifAωAifBωBifAωA+𝑜ifBωBifAωA
17 10 12 15 16 mp3an ifBωBifAωA+𝑜ifBωBifAωA
18 4 8 17 dedth2h AωBωBA+𝑜BA