| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ω , 𝐴 , ∅ ) → ( 𝐴 +o 𝐵 ) = ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝐵 ) ) |
| 2 |
|
id |
⊢ ( 𝐴 = if ( 𝐴 ∈ ω , 𝐴 , ∅ ) → 𝐴 = if ( 𝐴 ∈ ω , 𝐴 , ∅ ) ) |
| 3 |
1 2
|
difeq12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ω , 𝐴 , ∅ ) → ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) = ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝐵 ) ∖ if ( 𝐴 ∈ ω , 𝐴 , ∅ ) ) ) |
| 4 |
3
|
breq2d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ω , 𝐴 , ∅ ) → ( 𝐵 ≈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ↔ 𝐵 ≈ ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝐵 ) ∖ if ( 𝐴 ∈ ω , 𝐴 , ∅ ) ) ) ) |
| 5 |
|
id |
⊢ ( 𝐵 = if ( 𝐵 ∈ ω , 𝐵 , ∅ ) → 𝐵 = if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) |
| 6 |
|
oveq2 |
⊢ ( 𝐵 = if ( 𝐵 ∈ ω , 𝐵 , ∅ ) → ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝐵 ) = ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ) |
| 7 |
6
|
difeq1d |
⊢ ( 𝐵 = if ( 𝐵 ∈ ω , 𝐵 , ∅ ) → ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝐵 ) ∖ if ( 𝐴 ∈ ω , 𝐴 , ∅ ) ) = ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ∖ if ( 𝐴 ∈ ω , 𝐴 , ∅ ) ) ) |
| 8 |
5 7
|
breq12d |
⊢ ( 𝐵 = if ( 𝐵 ∈ ω , 𝐵 , ∅ ) → ( 𝐵 ≈ ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝐵 ) ∖ if ( 𝐴 ∈ ω , 𝐴 , ∅ ) ) ↔ if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ≈ ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ∖ if ( 𝐴 ∈ ω , 𝐴 , ∅ ) ) ) ) |
| 9 |
|
peano1 |
⊢ ∅ ∈ ω |
| 10 |
9
|
elimel |
⊢ if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ∈ ω |
| 11 |
|
ovex |
⊢ ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ∈ V |
| 12 |
11
|
difexi |
⊢ ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ∖ if ( 𝐴 ∈ ω , 𝐴 , ∅ ) ) ∈ V |
| 13 |
9
|
elimel |
⊢ if ( 𝐴 ∈ ω , 𝐴 , ∅ ) ∈ ω |
| 14 |
|
eqid |
⊢ ( 𝑥 ∈ if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ↦ ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝑥 ) ) = ( 𝑥 ∈ if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ↦ ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝑥 ) ) |
| 15 |
13 10 14
|
unfilem2 |
⊢ ( 𝑥 ∈ if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ↦ ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝑥 ) ) : if ( 𝐵 ∈ ω , 𝐵 , ∅ ) –1-1-onto→ ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ∖ if ( 𝐴 ∈ ω , 𝐴 , ∅ ) ) |
| 16 |
|
f1oen2g |
⊢ ( ( if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ∈ ω ∧ ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ∖ if ( 𝐴 ∈ ω , 𝐴 , ∅ ) ) ∈ V ∧ ( 𝑥 ∈ if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ↦ ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝑥 ) ) : if ( 𝐵 ∈ ω , 𝐵 , ∅ ) –1-1-onto→ ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ∖ if ( 𝐴 ∈ ω , 𝐴 , ∅ ) ) ) → if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ≈ ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ∖ if ( 𝐴 ∈ ω , 𝐴 , ∅ ) ) ) |
| 17 |
10 12 15 16
|
mp3an |
⊢ if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ≈ ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ∖ if ( 𝐴 ∈ ω , 𝐴 , ∅ ) ) |
| 18 |
4 8 17
|
dedth2h |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → 𝐵 ≈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) |