Metamath Proof Explorer


Theorem uniabio

Description: Part of Theorem 8.17 in Quine p. 56. This theorem serves as a lemma for the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011)

Ref Expression
Assertion uniabio xφx=yx|φ=y

Proof

Step Hyp Ref Expression
1 abbi xφx=yx|φ=x|x=y
2 df-sn y=x|x=y
3 1 2 eqtr4di xφx=yx|φ=y
4 3 unieqd xφx=yx|φ=y
5 unisnv y=y
6 4 5 eqtrdi xφx=yx|φ=y