Metamath Proof Explorer


Theorem unidif0

Description: The removal of the empty set from a class does not affect its union. (Contributed by NM, 22-Mar-2004)

Ref Expression
Assertion unidif0 A=A

Proof

Step Hyp Ref Expression
1 uniun A=A
2 undif1 A=A
3 uncom A=A
4 2 3 eqtr2i A=A
5 4 unieqi A=A
6 0ex V
7 6 unisn =
8 7 uneq2i A=A
9 un0 A=A
10 8 9 eqtr2i A=A
11 1 5 10 3eqtr4ri A=A
12 uniun A=A
13 7 uneq1i A=A
14 11 12 13 3eqtri A=A
15 uncom A=A
16 un0 A=A
17 14 15 16 3eqtri A=A