Metamath Proof Explorer


Theorem uniinn0

Description: Sufficient and necessary condition for a union to intersect with a given set. (Contributed by Thierry Arnoux, 27-Jan-2020)

Ref Expression
Assertion uniinn0 A B x A x B

Proof

Step Hyp Ref Expression
1 nne ¬ x B x B =
2 1 ralbii x A ¬ x B x A x B =
3 ralnex x A ¬ x B ¬ x A x B
4 unissb A V B x A x V B
5 disj2 A B = A V B
6 disj2 x B = x V B
7 6 ralbii x A x B = x A x V B
8 4 5 7 3bitr4ri x A x B = A B =
9 2 3 8 3bitr3i ¬ x A x B A B =
10 9 necon1abii A B x A x B