Metamath Proof Explorer


Theorem uniqs2

Description: The union of a quotient set. (Contributed by Mario Carneiro, 11-Jul-2014)

Ref Expression
Hypotheses qsss.1 φRErA
qsss.2 φRV
Assertion uniqs2 φA/R=A

Proof

Step Hyp Ref Expression
1 qsss.1 φRErA
2 qsss.2 φRV
3 uniqs RVA/R=RA
4 2 3 syl φA/R=RA
5 erdm RErAdomR=A
6 1 5 syl φdomR=A
7 6 imaeq2d φRdomR=RA
8 4 7 eqtr4d φA/R=RdomR
9 imadmrn RdomR=ranR
10 8 9 eqtrdi φA/R=ranR
11 errn RErAranR=A
12 1 11 syl φranR=A
13 10 12 eqtrd φA/R=A