Metamath Proof Explorer


Theorem unirnfdomd

Description: The union of the range of a function from an infinite set into the class of finite sets is dominated by its domain. Deduction form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses unirnfdomd.1 φ F : T Fin
unirnfdomd.2 φ ¬ T Fin
unirnfdomd.3 φ T V
Assertion unirnfdomd φ ran F T

Proof

Step Hyp Ref Expression
1 unirnfdomd.1 φ F : T Fin
2 unirnfdomd.2 φ ¬ T Fin
3 unirnfdomd.3 φ T V
4 1 ffnd φ F Fn T
5 fnex F Fn T T V F V
6 4 3 5 syl2anc φ F V
7 rnexg F V ran F V
8 6 7 syl φ ran F V
9 frn F : T Fin ran F Fin
10 dfss3 ran F Fin x ran F x Fin
11 9 10 sylib F : T Fin x ran F x Fin
12 fict x Fin x ω
13 12 ralimi x ran F x Fin x ran F x ω
14 1 11 13 3syl φ x ran F x ω
15 unidom ran F V x ran F x ω ran F ran F × ω
16 8 14 15 syl2anc φ ran F ran F × ω
17 fnrndomg T V F Fn T ran F T
18 3 4 17 sylc φ ran F T
19 omex ω V
20 19 xpdom1 ran F T ran F × ω T × ω
21 18 20 syl φ ran F × ω T × ω
22 domtr ran F ran F × ω ran F × ω T × ω ran F T × ω
23 16 21 22 syl2anc φ ran F T × ω
24 infinf T V ¬ T Fin ω T
25 3 24 syl φ ¬ T Fin ω T
26 2 25 mpbid φ ω T
27 xpdom2g T V ω T T × ω T × T
28 3 26 27 syl2anc φ T × ω T × T
29 domtr ran F T × ω T × ω T × T ran F T × T
30 23 28 29 syl2anc φ ran F T × T
31 infxpidm ω T T × T T
32 26 31 syl φ T × T T
33 domentr ran F T × T T × T T ran F T
34 30 32 33 syl2anc φ ran F T