Metamath Proof Explorer


Theorem unissint

Description: If the union of a class is included in its intersection, the class is either the empty set or a singleton ( uniintsn ). (Contributed by NM, 30-Oct-2010) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion unissint AAA=A=A

Proof

Step Hyp Ref Expression
1 simpl AA¬A=AA
2 df-ne A¬A=
3 intssuni AAA
4 2 3 sylbir ¬A=AA
5 4 adantl AA¬A=AA
6 1 5 eqssd AA¬A=A=A
7 6 ex AA¬A=A=A
8 7 orrd AAA=A=A
9 ssv AV
10 int0 =V
11 9 10 sseqtrri A
12 inteq A=A=
13 11 12 sseqtrrid A=AA
14 eqimss A=AAA
15 13 14 jaoi A=A=AAA
16 8 15 impbii AAA=A=A