Description: If the union of a class is included in its intersection, the class is either the empty set or a singleton ( uniintsn ). (Contributed by NM, 30-Oct-2010) (Proof shortened by Andrew Salmon, 25-Jul-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | unissint | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |
|
2 | df-ne | |
|
3 | intssuni | |
|
4 | 2 3 | sylbir | |
5 | 4 | adantl | |
6 | 1 5 | eqssd | |
7 | 6 | ex | |
8 | 7 | orrd | |
9 | ssv | |
|
10 | int0 | |
|
11 | 9 10 | sseqtrri | |
12 | inteq | |
|
13 | 11 12 | sseqtrrid | |
14 | eqimss | |
|
15 | 13 14 | jaoi | |
16 | 8 15 | impbii | |