Metamath Proof Explorer


Theorem unitg

Description: The topology generated by a basis B is a topology on U. B . Importantly, this theorem means that we don't have to specify separately the base set for the topological space generated by a basis. In other words, any member of the class TopBases completely specifies the basis it corresponds to. (Contributed by NM, 16-Jul-2006) (Proof shortened by OpenAI, 30-Mar-2020)

Ref Expression
Assertion unitg BVtopGenB=B

Proof

Step Hyp Ref Expression
1 tg1 xtopGenBxB
2 velpw x𝒫BxB
3 1 2 sylibr xtopGenBx𝒫B
4 3 ssriv topGenB𝒫B
5 sspwuni topGenB𝒫BtopGenBB
6 4 5 mpbi topGenBB
7 6 a1i BVtopGenBB
8 bastg BVBtopGenB
9 8 unissd BVBtopGenB
10 7 9 eqssd BVtopGenB=B