Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
unpreima
Next ⟩
inpreima
Metamath Proof Explorer
Ascii
Unicode
Theorem
unpreima
Description:
Preimage of a union.
(Contributed by
Jeff Madsen
, 2-Sep-2009)
Ref
Expression
Assertion
unpreima
⊢
Fun
⁡
F
→
F
-1
A
∪
B
=
F
-1
A
∪
F
-1
B
Proof
Step
Hyp
Ref
Expression
1
funfn
⊢
Fun
⁡
F
↔
F
Fn
dom
⁡
F
2
elpreima
⊢
F
Fn
dom
⁡
F
→
x
∈
F
-1
A
∪
B
↔
x
∈
dom
⁡
F
∧
F
⁡
x
∈
A
∪
B
3
elun
⊢
F
⁡
x
∈
A
∪
B
↔
F
⁡
x
∈
A
∨
F
⁡
x
∈
B
4
3
anbi2i
⊢
x
∈
dom
⁡
F
∧
F
⁡
x
∈
A
∪
B
↔
x
∈
dom
⁡
F
∧
F
⁡
x
∈
A
∨
F
⁡
x
∈
B
5
andi
⊢
x
∈
dom
⁡
F
∧
F
⁡
x
∈
A
∨
F
⁡
x
∈
B
↔
x
∈
dom
⁡
F
∧
F
⁡
x
∈
A
∨
x
∈
dom
⁡
F
∧
F
⁡
x
∈
B
6
4
5
bitri
⊢
x
∈
dom
⁡
F
∧
F
⁡
x
∈
A
∪
B
↔
x
∈
dom
⁡
F
∧
F
⁡
x
∈
A
∨
x
∈
dom
⁡
F
∧
F
⁡
x
∈
B
7
elun
⊢
x
∈
F
-1
A
∪
F
-1
B
↔
x
∈
F
-1
A
∨
x
∈
F
-1
B
8
elpreima
⊢
F
Fn
dom
⁡
F
→
x
∈
F
-1
A
↔
x
∈
dom
⁡
F
∧
F
⁡
x
∈
A
9
elpreima
⊢
F
Fn
dom
⁡
F
→
x
∈
F
-1
B
↔
x
∈
dom
⁡
F
∧
F
⁡
x
∈
B
10
8
9
orbi12d
⊢
F
Fn
dom
⁡
F
→
x
∈
F
-1
A
∨
x
∈
F
-1
B
↔
x
∈
dom
⁡
F
∧
F
⁡
x
∈
A
∨
x
∈
dom
⁡
F
∧
F
⁡
x
∈
B
11
7
10
bitrid
⊢
F
Fn
dom
⁡
F
→
x
∈
F
-1
A
∪
F
-1
B
↔
x
∈
dom
⁡
F
∧
F
⁡
x
∈
A
∨
x
∈
dom
⁡
F
∧
F
⁡
x
∈
B
12
6
11
bitr4id
⊢
F
Fn
dom
⁡
F
→
x
∈
dom
⁡
F
∧
F
⁡
x
∈
A
∪
B
↔
x
∈
F
-1
A
∪
F
-1
B
13
2
12
bitrd
⊢
F
Fn
dom
⁡
F
→
x
∈
F
-1
A
∪
B
↔
x
∈
F
-1
A
∪
F
-1
B
14
13
eqrdv
⊢
F
Fn
dom
⁡
F
→
F
-1
A
∪
B
=
F
-1
A
∪
F
-1
B
15
1
14
sylbi
⊢
Fun
⁡
F
→
F
-1
A
∪
B
=
F
-1
A
∪
F
-1
B