Description: Lemma for unxpdom . (Trivial substitution proof.) (Contributed by Mario Carneiro, 13-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | unxpdomlem1.1 | |
|
unxpdomlem1.2 | |
||
Assertion | unxpdomlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unxpdomlem1.1 | |
|
2 | unxpdomlem1.2 | |
|
3 | elequ1 | |
|
4 | opeq1 | |
|
5 | equequ1 | |
|
6 | 5 | ifbid | |
7 | 6 | opeq2d | |
8 | 4 7 | eqtrd | |
9 | equequ1 | |
|
10 | 9 | ifbid | |
11 | 10 | opeq1d | |
12 | opeq2 | |
|
13 | 11 12 | eqtrd | |
14 | 3 8 13 | ifbieq12d | |
15 | 2 14 | eqtrid | |
16 | opex | |
|
17 | opex | |
|
18 | 16 17 | ifex | |
19 | 15 1 18 | fvmpt | |