Metamath Proof Explorer


Theorem unxpdomlem1

Description: Lemma for unxpdom . (Trivial substitution proof.) (Contributed by Mario Carneiro, 13-Jan-2013)

Ref Expression
Hypotheses unxpdomlem1.1 F=xabG
unxpdomlem1.2 G=ifxaxifx=mtsifx=tnmx
Assertion unxpdomlem1 zabFz=ifzazifz=mtsifz=tnmz

Proof

Step Hyp Ref Expression
1 unxpdomlem1.1 F=xabG
2 unxpdomlem1.2 G=ifxaxifx=mtsifx=tnmx
3 elequ1 x=zxaza
4 opeq1 x=zxifx=mts=zifx=mts
5 equequ1 x=zx=mz=m
6 5 ifbid x=zifx=mts=ifz=mts
7 6 opeq2d x=zzifx=mts=zifz=mts
8 4 7 eqtrd x=zxifx=mts=zifz=mts
9 equequ1 x=zx=tz=t
10 9 ifbid x=zifx=tnm=ifz=tnm
11 10 opeq1d x=zifx=tnmx=ifz=tnmx
12 opeq2 x=zifz=tnmx=ifz=tnmz
13 11 12 eqtrd x=zifx=tnmx=ifz=tnmz
14 3 8 13 ifbieq12d x=zifxaxifx=mtsifx=tnmx=ifzazifz=mtsifz=tnmz
15 2 14 eqtrid x=zG=ifzazifz=mtsifz=tnmz
16 opex zifz=mtsV
17 opex ifz=tnmzV
18 16 17 ifex ifzazifz=mtsifz=tnmzV
19 15 1 18 fvmpt zabFz=ifzazifz=mtsifz=tnmz